The increasing presence of 1,1,1,2-tetrafluoroethane (CF3CH2F) in the atmosphere has prompted detailed studies into its complex photodissociation behavior. Experiments focusing on CF3CH2F irradiation have unveiled an array of ions, with the persistent observation of the rearrangement product CHF2+ not yet fully understood. In this work, we combine density functional theory, coupled-cluster calculations with a complete basis set formalism, and atom-centered density matrix propagation molecular dynamics to investigate the energetics and dynamics of different potential pathways leading to CHF2+.
View Article and Find Full Text PDFWe studied the organization of the inferior parietal cortex (IPC) in five capuchin monkey (6 hemispheres) using cytoarchitectonic (Nissl), myeloarchitectonic (Gallyas), and immune-architectonic (SMI-32 monoclonal antibody) techniques. We partitioned the IPC into five distinct areas: PFG, PG, Opt, PFop, and PGop. Since we used parasagittal sections, we were not able to study area PF due to its far lateral position, which yielded slices that were tangential to the pial surface.
View Article and Find Full Text PDFThis work discusses the possible HF formation routes via recombination reactions from CFCHF (R-134a) and its cation. The molecular properties of the main reagents were first evaluated at the M06-2X/cc-pVTZ level. Then, changes in energy (ΔE) for all reactions comprising a possible HF formation from the studied systems were evaluated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level.
View Article and Find Full Text PDF