Publications by authors named "V Krzyzanek"

Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known.

View Article and Find Full Text PDF

A quantitative four-dimensional scanning transmission electron microscopy (4D-STEM) imaging technique (q4STEM) for local thickness estimation across amorphous specimen such as obtained by focused ion beam (FIB)-milling of lamellae for (cryo-)TEM analysis is presented. This study is based on measuring spatially resolved diffraction patterns to obtain the angular distribution of electron scattering, or the ratio of integrated virtual dark and bright field STEM signals, and their quantitative evaluation using Monte Carlo simulations. The method is independent of signal intensity calibrations and only requires knowledge of the detector geometry, which is invariant for a given instrument.

View Article and Find Full Text PDF

Sample preparation protocols for conventional high voltage transmission electron microscopy (TEM) heavily rely on the usage of staining agents containing various heavy metals, most commonly uranyl acetate and lead citrate. However high toxicity, rising legal regulations, and problematic waste disposal of uranyl acetate have increased calls for the reduction or even complete replacement of this staining agent. One of the strategies for uranyless imaging is the employment of low-voltage transmission electron microscopy.

View Article and Find Full Text PDF

This contribution is focused on the preparation of a liposomal drug delivery system of erlotinib resisting the nebulization process that could be used for local treatment of non-small-cell lung cancer. Liposomes with different compositions were formulated to reveal their influence on the encapsulation efficiency of erlotinib. An encapsulation efficiency higher than 98 % was achieved for all vesicles containing phosphatidic acid (d ≈ 100 nm, ζ = - 43 mV) even in the presence of polyethylene glycol (d ≈ 150 nm, ζ = - 17 mV) which decreased this value in all other formulas.

View Article and Find Full Text PDF