Publications by authors named "V Krougliak"

Fully deleted adenovirus vectors (FD-AdVs) would appear to be promising tools for gene therapy. Since these vectors are deleted of all adenoviral genes, they require a helper adenovirus for their propagation. The contamination of the vector preparation by the helper limits the utility of currently existing FD-AdVs in gene therapy applications.

View Article and Find Full Text PDF

Background: A major limitation of adenovirus-mediated gene therapy for metabolic and inherited diseases is the instability of transgene expression in vivo. This instability results, at least in part, from the inability of the vector genome to maintain the transgene through replication or integration. In this study we evaluated the possibility of stabilization of an adenovirus-delivered transgene by non-adenovirus replicative elements.

View Article and Find Full Text PDF

We have previously described two replication-competent adenovirus vectors, named KD1 and KD3, for potential use in cancer gene therapy. KD1 and KD3 have two small deletions in the E1A gene that restrict efficient replication of these vectors to human cancer cell lines. These vectors also have increased capacity to lyse cells and spread from cell to cell because they overexpress the adenovirus death protein, an adenovirus protein required for efficient cell lysis and release of adenovirus from the cell.

View Article and Find Full Text PDF

The cloning capacity of currently available E1- and E3-deleted adenovirus (Ad) vectors does not exceed 8 kb. To increase capacity and improve vector safety further, we have explored the possibility that Early Region 4 (E4) and the gene encoding protein IX (pIX) might also be deleted. To generate cell lines expressing sufficient levels of E4 and pIX proteins in trans in addition to E1-encoded proteins to complement mutations in these genes, we transformed 293 cells with constructs containing the E4 transcription unit and pIX coding sequences under the control of inducible mouse mammary tumor virus (MMTV) and metallothionein promoters, respectively.

View Article and Find Full Text PDF

dl309 is an adenovirus type 5 (Ad5) mutant that has been extensively utilized for construction of Ad5 mutants in early region 1 (E1), in developing vectors for use as viral vaccines, and in development of gene transfer vectors for gene therapy. Ad5 dl309 has been useful for vector construction because of its altered XbaI restriction pattern and lends itself to a variety of strategies for rescuing inserts or mutations into E1. It contains only one XbaI site at 3.

View Article and Find Full Text PDF