Publications by authors named "V Krauth"

5-Lipoxygenase (LO) catalyzes the first steps in the formation of pro-inflammatory leukotrienes (LT) that are pivotal lipid mediators contributing to allergic reactions and inflammatory disorders. Based on its key role in LT biosynthesis, 5-LO is an attractive drug target, demanding for effective and selective inhibitors with efficacy in vivo, which however, are still rare. Encouraged by the recent identification of the catechol 4-(3,4-dihydroxyphenyl)dibenzofuran 1 as 5-LO inhibitor, simple structural modifications were made to yield even more effective and selective catechol derivatives.

View Article and Find Full Text PDF

Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases and the discovery of antioxidants is an attractive approach that can simultaneously tackle two or more therapeutic targets of the arachidonic acid cascade. We report that the simple structural variations on the 4-aryl-benzene-1,2-diol side-arm of the scaffold significantly influence the selectivity against 5-LOX vs 12- and 15-LOX. Derivatives 4 a-l were evaluated for their antioxidant activity, using the DPPH, and ferric ion reducing antioxidant power (FRAP) methods.

View Article and Find Full Text PDF

5-Lipoxygenase (5-LO) initiates the biosynthesis of pro-inflammatory leukotrienes from arachidonic acid, which requires the nuclear membrane-bound 5-LO-activating protein (FLAP) for substrate transfer. Here, we identified human 5-LO as a molecular target of melleolides from honey mushroom (Armillaria mellea). Melleolides inhibit 5-LO via an α,β-unsaturated aldehyde serving as Michael acceptor for surface cysteines at the substrate entrance that are revealed as molecular determinants for 5-LO activity.

View Article and Find Full Text PDF

The severity and course of inflammatory processes differ between women and men, but the biochemical mechanisms underlying these sex differences are elusive. Prostaglandins (PG) and leukotrienes (LT) are lipid mediators linked to inflammation. We demonstrated superior LT biosynthesis in human neutrophils and monocytes, and in mouse macrophages from females, and we confirmed these sex differences in vivo where female mice produced more LTs during zymosan-induced peritonitis versus males.

View Article and Find Full Text PDF

Among the pathways responsible for the development of inflammatory responses, the cyclooxygenase and lipoxygenase pathways are among the most important ones. Two key enzymes, namely, 5-LO and mPGES-1, are involved in the biosynthesis of leukotrienes and prostaglandins, respectively, which are considered attractive therapeutic targets, so their dual inhibition might be an effective strategy to control inflammatory deregulation. Several natural products have been identified as 5-LO inhibitors, with some also being dual 5-LO/mPGES-1 inhibitors.

View Article and Find Full Text PDF