Publications by authors named "V Koteski"

We report the synthesis and characterization of FePdSe with a pyrite-type structure. FePdSe was synthesized using ambient pressure flux crystal growth methods even though the space group Pa3 is high-pressure polymorph for both FeSe and PdSe. Combined experimental and theoretical analysis reveal magnetic spin glass state below 23 K in 1000 Oe that stems from random Fe/Pd occupancies on the same atomic site.

View Article and Find Full Text PDF

X-ray absorption spectroscopy is employed to investigate site preference and lattice relaxation around Mo, Ru, Hf, W and Re dopants in Ni3Al. The site occupation preference and the measured distances between the refractory elements as dopants and the nearest host atoms are compared with the results of ab initio calculations within the density functional theory. Combined experimental and theoretical results indicate that Mo, Hf, W and Re atoms reside on the Al sublattice in Ni3Al, while Ru atoms occupy the Ni sublattice.

View Article and Find Full Text PDF

Mg2FeH6 is a promising hydrogen storage material with one of the highest volumetric hydrogen density among the known hydrogen storage materials. However, its complicated synthesis and high temperature of hydrogen desorption limit wider applications. In this paper we study the influence of transition metal (Ni, Co, Mn) doping on the structural, electronic and hydrogen sorption properties of Mg2FeH6, using first-principles density functional theory calculations.

View Article and Find Full Text PDF

The lattice relaxation around Ga in CdTe is investigated by means of extended X-ray absorption spectroscopy (EXAFS) and density functional theory (DFT) calculations using the linear augmented plane waves plus local orbitals (LAPW+lo) method. In addition to the substitutional position, the calculations are performed for DX- and A-centers of Ga in CdTe. The results of the calculations are in good agreement with the experimental data, as obtained from EXAFS and X-ray absorption near-edge structure (XANES).

View Article and Find Full Text PDF

The quadrupolar hyperfine interactions of in-diffused (111)In --> (111)Cd probes in polycrystalline isostructural Zr(4)Al(3) and Hf(4)Al(3) samples containing small admixtures of the phases (Zr/Hf)(3)Al(2) were investigated. A strong preference of (111)In solutes for the contaminant (Zr/Hf)(3)Al(2) minority phases was observed. Detailed calculations of the electric field gradient (EFG) at the Cd nucleus using the full-potential augmented plane wave + local orbital formalism allowed us to assign the observed EFG fractions to the various lattice sites in the (Zr/Hf)(3)Al(2) compounds and to understand the preferential site occupation of the minority phases by the (111)In atoms.

View Article and Find Full Text PDF