Publications by authors named "V Kislenko"

Nitrogen-doped graphenes were among the first promising metal-free carbon-based catalysts for the oxygen reduction reaction (ORR). However, data on the most efficient catalytic centers and their catalytic mechanisms are still under debate. In this work, we study the associative mechanism of the ORR in an alkaline medium on graphene containing various types of nitrogen doping.

View Article and Find Full Text PDF

The artificial olfaction units (or e-noses) capable of room-temperature operation are highly demanded to meet the requests of society in numerous vital applications and developing Internet-of-Things. Derivatized 2D crystals are considered as sensing elements of choice in this regard, unlocking the potential of the advanced e-nose technologies limited by the current semiconductor technologies. Herein, we consider fabrication and gas-sensing properties of On-chip multisensor arrays based on a hole-matrixed carbonylated (C-ny) graphene film with a gradually changed thickness and concentration of ketone groups of up to 12.

View Article and Find Full Text PDF

Correction for 'Modulation of the kinetics of outer-sphere electron transfer at graphene by a metal substrate' by Sergey V. Pavlov , , 2022, , 25203-25213, https://doi.org/10.

View Article and Find Full Text PDF

The derivatization of graphene to engineer its band structure is a subject of significant attention nowadays, extending the frames of graphene material applications in the fields of catalysis, sensing, and energy harvesting. Yet, the accurate identification of a certain group and its effect on graphene's electronic structure is an intricate question. Herein, we propose the advanced fingerprinting of the epoxide and hydroxyl groups on the graphene layers via core-level methods and reveal the modification of their valence band (VB) upon the introduction of these oxygen functionalities.

View Article and Find Full Text PDF

Solid-supported graphene is a typical configuration of electrochemical devices based on single-layer graphene. Therefore, it is necessary to understand the electrochemical features of such heterostructures. In this work, we theoretically investigated the effect of the metal type on the nonadiabatic electron transfer (ET) at the metal-supported graphene using DFT calculations.

View Article and Find Full Text PDF