The nonlinear response of a beam splitter to the coincident arrival of interacting particles enables numerous applications in quantum engineering and metrology. Yet, it poses considerable challenges to control interactions on the individual particle level. Here, we probe the coincidence correlations at a mesoscopic constriction between individual ballistic electrons in a system with unscreened Coulomb interactions and introduce concepts to quantify the associated parametric nonlinearity.
View Article and Find Full Text PDFMesoscopic integrated circuits aim for precise control over elementary quantum systems. However, as fidelities improve, the increasingly rare errors and component crosstalk pose a challenge for validating error models and quantifying accuracy of circuit performance. Here we propose and implement a circuit-level benchmark that models fidelity as a random walk of an error syndrome, detected by an accumulating probe.
View Article and Find Full Text PDFA method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source.
View Article and Find Full Text PDFIn quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz the accuracy typically decreases.
View Article and Find Full Text PDF