Fiber-reinforced composites are commonly exposed to environments associated with moisture and solution, resulting in uptake, which causes changes in the bulk resin, the fiber-matrix interface, and even the fiber itself. Knowledge about uptake behavior and diffusion mechanisms and characteristics are critical to better understanding the response of these materials to environmental exposure faced through service to developing better materials through selection of constituents and to the prediction of long-term durability. This paper reviews aspects of uptake mechanisms and subsequent response, as well as models that describe the sorption process, with the aim of providing a comprehensive understanding of moisture-uptake-related phenomena and characteristics such as uptake rate, diffusion and relaxation/deterioration constants, transitions in regimes, and overall response.
View Article and Find Full Text PDFPultruded fiber reinforced polymer composites used in civil, power, and offshore/marine applications use fillers as resin extenders and for process efficiency. Although the primary use of fillers is in the form of an extender and processing aid, the appropriate selection of filler can result in enhancing mechanical performance characteristics, durability, and multifunctionality. This is of special interest in structural and high voltage applications where the previous use of specific fillers has been at levels that are too low to provide these enhancements.
View Article and Find Full Text PDFCarbon fiber-reinforced epoxy matrix composites using ambient- and moderate-temperature curing non-autoclave processes have broad applicability in marine, offshore, and naval applications. This research focuses on the characterization of moisture kinetics of ambient cured carbon/epoxy composites subject to immersion in seawater for up to 72 weeks after prior periods of extended thermal aging. A two-stage model is shown to best describe the overall kinetics and response.
View Article and Find Full Text PDFAmbient cured wet layup carbon fiber reinforced epoxy composites used extensively in the rehabilitation of infrastructure and in structural components can be exposed to elevated temperature regimes for extended periods of time of hours to a few days due to thermal excursions. These may be severe enough to cause a significant temperature rise without deep charring as through fires at a small distance and even high-temperature industrial processes. In such cases, it is critical to have information related to the post-event residual mechanical properties and damage states.
View Article and Find Full Text PDFAim: To investigate using finite element stress analysis (FEA) primary, secondary and tertiary monoblocks created either by adhesive resin sealers or by different adhesive posts and to evaluate the effect of interfaces on stress distribution in incisor models.
Methodology: Seven maxillary incisor FEA models representing different monoblocks using several materials were created as follows: (a) primary monoblock with Mineral Trioxide Aggregate; (b) secondary monoblock with sealer (MetaSEAL) and Resilon; (c) tertiary monoblock with EndoREZ; (d) primary monoblock with polyethylene fibre post-core (Ribbond); (e) secondary monoblock with glass-fibre post and resin cement; (f) tertiary monoblock with bondable glass-fibre post; (g) tertiary monoblock with silane-coated ceramic post. A 300 N load was applied from the palatal surface of the crown with a 135° angle to the tooth long axis.