The quantum phase transition observed experimentally in two-dimensional (2D) electron systems has been a subject of theoretical and experimental studies for almost 30 years. We suggest Gaussian approximation to the mean-field theory of the second-order phase transition to explain the experimental data. Our approach explains self-consistently the universal value of the critical exponent 3/2 (found after scaling measured resistivities on both sides of the transition as a function of temperature) as the result of the divergence of the correlation length when the electron density approaches the critical value.
View Article and Find Full Text PDFWe study the stability of multiple conducting edge states in a topological insulator against perturbations allowed by the time-reversal symmetry. A system is modeled as a multi-channel Luttinger liquid, with the number of channels equal to the number of Kramers doublets at the edge. Assuming strong interactions and weak disorder, we first formulate a low-energy effective theory for a clean translation invariant system and then include the disorder terms allowed by the time-reversal symmetry.
View Article and Find Full Text PDFWe study a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in a two-dimensional array in the absence of a magnetic field. We analyse whether the nearest-neighbour inter-wire interactions, stabilise the SLL phase. We construct an analogue of a Su-Schriefer-Heeger (SSH) model (allowing alternating couplings between wires).
View Article and Find Full Text PDFWe revise a phase diagram for the sliding Luttinger liquid (SLL) of coupled one-dimensional quantum wires packed in two- or three-dimensional arrays in the absence of a magnetic field. We analyse whether physically justifiable (reasonable) inter-wire interactions, i.e.
View Article and Find Full Text PDFMotivated by recent experiments, where the tunnel magnetoresitance (TMR) of a spin valve was measured locally, we theoretically study the distribution of TMR along the surface of magnetized electrodes. We show that, even in the absence of interfacial effects (like hybridization due to donor and acceptor molecules), this distribution is very broad, and the portion of area with negative TMR is appreciable even if on average the TMR is positive. The origin of the local sign reversal is quantum interference of subsequent spin-rotation amplitudes in the course of incoherent transport of carriers between the source and the drain.
View Article and Find Full Text PDF