The development of higher-order micromagnetic small-angle neutron scattering theory in nanocrystalline materials is still in its infancy. One key challenge remaining in this field is understanding the role played by the microstructure on the magnitude and sign of the higher-order scattering contribution recently observed in nanocrystalline materials prepared by high-pressure torsion. By combining structural and magnetic characterization techniques, namely X-ray diffraction, electron backscattered diffraction and magnetometry with magnetic small-angle neutron scattering, this work discusses the relevance of higher-order terms in the magnetic small-angle neutron scattering cross section of pure iron prepared by high-pressure torsion associated with a post-annealing process.
View Article and Find Full Text PDFMicromagnetic small-angle neutron scattering theory is well established for analyzing spin-misalignment scattering data of bulk ferromagnets. Here, this theory is extended to allow for a global uniaxial magnetic anisotropy (texture) of the material, in addition to the already included random zero-average local anisotropy. Macroscopic cross sections and spin-misalignment response functions are computed analytically for several practically relevant mutual anisotropy and external magnetic field orientations in both parallel and perpendicular scattering geometries for field magnitudes both above and below the rotational saturation.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
October 2021
The article describes a new phenomenon in the breeding group of mini-pigs at the Institute of Cytology and Genetics (ICG, Novosibirsk): polydactyly (extra digits), which is unusual because the additional digits are situated at the lateral surface of legs or at the lateral and medial ones. This anomaly was f irst found here in 2017 in adult animals intended for culling due to incorrect positioning of the legs caused by f lexor tendon laxity and resulting in weight-bearing on the palmar surface of the proximal phalanges ("bear's paw"). Therefore, the polydactyly of mini-pigs has a pronounced negative selection effect.
View Article and Find Full Text PDF