Publications by authors named "V K Komlev"

One of the key factors of the interaction 'osteoplastic material-organism' is the state of the implant surface. Taking into account the fact that the equilibrium in regeneration conditions is reached only after the reparative histogenesis process is completed, the implant surface is constantly modified. This work is devoted to the numerical description of the dynamic bilateral material-medium interaction under close to physiological conditions, as well as to the assessment of the comparability of the model with and experimental results.

View Article and Find Full Text PDF

Mesoporous hydroxyapatite (HA) is widely used in various applications, such as the biomedical field, as a catalytic, as a sensor, and many others. The aim of this work was to obtain HA powders by means of chemical precipitation in a medium containing a polymer-polyvinyl alcohol or polyvinylpyrrolidone (PVP)-with concentrations ranging from 0 to 10%. The HA powders were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic emission spectroscopy with inductively coupled plasma, electron paramagnetic resonance, scanning electron microscopy (SEM), and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Creating bioactive materials for bone tissue regeneration and augmentation remains a pertinent challenge. One of the most promising and rapidly advancing approaches involves the use of low-temperature ceramics that closely mimic the natural composition of the extracellular matrix of native bone tissue, such as Hydroxyapatite (HAp) and its phase precursors (Dicalcium Phosphate Dihydrate-DCPD, Octacalcium Phosphate-OCP, etc.).

View Article and Find Full Text PDF

This study examined the effectiveness of coating demineralized bone matrix (DBM) with amorphous calcium phosphate (DBM + CaP), as well as a composite of DBM, calcium phosphate, and serum albumin (DBM + CaP + BSA). The intact structure of DBM promotes the transformation of amorphous calcium phosphate (CaP) into dicalcium phosphate dihydrate (DCPD) with a characteristic plate shape and particle size of 5-35 µm. The inclusion of BSA in the coating resulted in a better and more uniform distribution of CaP on the surface of DBM trabeculae.

View Article and Find Full Text PDF

Hydroxyapatite (HA) remains one of the most popular materials for various biomedical applications and its fields of application have been expanding. Lithium (Li) is a promising candidate for modifying the biological behavior of HA. Li is present in trace amounts in the human body as an alkaline and bioelectric material.

View Article and Find Full Text PDF