Hybrid density functional approximations (DFAs) offer compelling accuracy for ab initio electronic-structure simulations of molecules, nanosystems, and bulk materials, addressing some deficiencies of computationally cheaper, frequently used semilocal DFAs. However, the computational bottleneck of hybrid DFAs is the evaluation of the non-local exact exchange contribution, which is the limiting factor for the application of the method for large-scale simulations. In this work, we present a drastically optimized resolution-of-identity-based real-space implementation of the exact exchange evaluation for both non-periodic and periodic boundary conditions in the all-electron code FHI-aims, targeting high-performance central processing unit (CPU) compute clusters.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2022
The protection of halide perovskites is important for the performance and stability of emergent perovskite-based optoelectronic technologies. In this work, we investigate the potential inorganic protective coating materials ZnO, SrZrO, and ZrO for the CsPbI perovskite. The optimal interface registries are identified with Bayesian optimization.
View Article and Find Full Text PDFThe effects of alkali postdeposition treatment (PDT) on the valence band structure of Cu(In,Ga)Se (CIGSe) thin-film solar cell absorbers are addressed from a first-principles perspective. In detail, experimentally derived hard X-ray photoelectron spectroscopy (HAXPES) data [ Handick , E. ; ACS Appl.
View Article and Find Full Text PDFThe conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green's function method combined with the density-functional theory.
View Article and Find Full Text PDFObtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g.
View Article and Find Full Text PDF