Due to their unique physical and chemical properties, complex nanostructures based on carbon nanotubes and transition metal oxides are considered promising electrode materials for the fabrication of high-performance supercapacitors with a fast charge rate, high power density, and long cycle life. The crucial role in determining their efficiency is played by the properties of the interface in such nanostructures, among them, the type of chemical bonds between their components. The complementary theoretical and experimental methods, including dispersion-corrected density functional theory (DFT-D3) within GGA-PBE approximation, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, X-ray photoelectron, and X-ray absorption spectroscopies, were applied in the present work for the comprehensive investigation of surface morphology, structure, and electronic properties in CuOx/MWCNTs and NiO/MWCNTs.
View Article and Find Full Text PDFThe two main problems of dielectric metasurfaces for sensing and spectroscopy based on electromagnetic field enhancement are that resonances are mainly localized inside the resonator volume and that experimental Q-factors are very limited. To address these issues, a novel dielectric metasurface supporting delocalized modes based on quasi-bound states in the continuum (quasi-BICs) is proposed and theoretically demonstrated. The metasurface comprises a periodic array of silicon hollow nanocuboids patterned on a glass substrate.
View Article and Find Full Text PDFThe cell wall of yeast grown on presence of hexadecane as a sole carbon source undergoes structural and functional changes including the formation of specific supramolecular complexes-canals. The canals contain specific polysaccharides and enzymes that provide primary oxidization of alkanes. In addition, inorganic polyphosphate (polyP) was identified in canals.
View Article and Find Full Text PDFThis study focuses on the molecular design and synthesis of salt spiropyrans with near-IR fluorescence. The structure of the obtained compounds was confirmed by NMR, IR and mass spectroscopy. In the course of studying the spectral and photoluminescent characteristics, it was possible to reveal the effect of some substituents in various positions on the properties of spiropyran dyes.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2023
Amyloid fibrils have been associated with human disease for many decades, but it has also become apparent that they play a functional, non-disease-related role in e.g. bacteria and mammals.
View Article and Find Full Text PDF