An interconnected group of cortical regions distributed across the primate inferotemporal cortex forms a network critical for face perception. Understanding the microarchitecture of this face network can refine mechanistic accounts of how individual areas function and interact to support visual perception. To address this, we acquire a unique dataset in macaque monkeys combining fMRI to localize face patches in vivo and then ex vivo histology to resolve their histo-architecture across cortical depths in the same individuals.
View Article and Find Full Text PDFA central goal of systems neuroscience is to understand how populations of sensory neurons encode and relay information to the rest of the brain. Three key quantities of interest are ) how mean neural activity depends on the stimulus (sensitivity), ) how neural activity (co)varies around the mean (noise correlations), and ) how predictive these variations are of the subject's behavior (choice probability). Previous empirical work suggests that both choice probability and noise correlations are affected by task training, with decision-related information fed back to sensory areas and aligned to neural sensitivity on a task-by-task basis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2020
Primate brains typically have regions within the ventral visual stream that are selectively responsive to faces. In macaques, these face patches are located in similar parts of inferotemporal cortex across individuals although correspondence with particular anatomical features has not been reported previously. Here, using high-resolution functional and anatomical imaging, we show that small "bumps," or buried gyri, along the lower bank of the superior temporal sulcus are predictive of the location of face-selective regions.
View Article and Find Full Text PDFHereditary hearing loss often results from mutation of genes expressed by cochlear hair cells. Gene addition using AAV vectors has shown some efficacy in mouse models, but clinical application requires two additional advances. First, new AAV capsids must mediate efficient transgene expression in both inner and outer hair cells of the cochlea.
View Article and Find Full Text PDFSensory stimuli drive the maturation and function of the mammalian nervous system in part through the activation of gene expression networks that regulate synapse development and plasticity. These networks have primarily been studied in mice, and it is not known whether there are species- or clade-specific activity-regulated genes that control features of brain development and function. Here we use transcriptional profiling of human fetal brain cultures to identify an activity-dependent secreted factor, Osteocrin (OSTN), that is induced by membrane depolarization of human but not mouse neurons.
View Article and Find Full Text PDF