Probiotics Antimicrob Proteins
September 2019
Probiotic lactobacilli have an unprecedented history of safe use, although some cases of infections have raised concerns about their safety, and hence, a rigorous screening of any new strain even of Lactobacillus is a must in order to study possible adverse interactions with the host, particularly under unhealthy conditions. The present study was, therefore, undertaken to investigate the safety as well as therapeutic efficacy of probiotic Lactobacillus plantarum MTCC 5690 and L. fermentum MTCC 5689 strains in dextran sodium sulfate (DSS)-induced colitis mouse model.
View Article and Find Full Text PDFLactobacilli have a long history of safe use in human nutrition, however, inclusion of any new strain, despite its safe usage evidence, warrants proper analysis of its safety and toxicity under the purview of existing regulations. In the present investigation, Lactobacillus plantarum MTCC 5690 and Lactobacillus fermentum MTCC 5689 were evaluated for their safety and toxicity using both in vitro and in vivo approaches. The in vitro assays included mucin degradation, hemolytic activity, biogenic amine production and platelet aggregation assay.
View Article and Find Full Text PDFBackground & Objectives: Milk proteins play a beneficial role in the regulation of food intake, postprandial glycaemia and enteroendocrine hormone secretions and thus are receiving considerable attention for the management of metabolic inflammatory disorders such as type 2 diabetes mellitus (T2DM). The objective of this study was to evaluate the efficacy of peptide/s obtained from milk proteins (casein and whey) as well as from the milk fermented with Lactobacillus helveticus as secretagogues for gut hormones and to purify and characterize the active peptides.
Methods: Effect of hydrolysates of casein protein (CP) and whey protein (WP) and L.
Probiotic Lactobacillus plantarum MTCC 5690, a probiotic strain of Indian gut origin, and milk formulations produced with the same were explored in this study as biotherapeutics by evaluating their functional efficacy against Salmonella infection in mice. The efficacy of milk formulations (fermented/unfermented) of MTCC 5690 for enhancement of intestinal barrier function was determined by monitoring the permeability and histopathology of the intestine. Infected mice fed with probiotic Dahi, fermented probiotic drink and sweetened fermented probiotic drink maintained the health and integrity of the intestinal epithelium as compared to those fed with PBS, milk, unfermented probiotic milk and Dahi.
View Article and Find Full Text PDFPurpose: Diabetes and obesity are characterized by glucose intolerance, fat deposition, inflammation, and dyslipidemia. Recent reports postulated that distinct gut microbiota alterations were observed in obese/diabetic subjects and modulating gut microbiota beneficially through specific probiotics could be a potential therapeutic option for type 2 diabetes/obesity. Therefore, we attempted to study the efficacy of probiotics of Indian gut origin (Lactobacillus plantarum MTCC5690 and Lactobacillus fermentum MTCC5689) along with a positive control, Lactobacillus rhamnosus (LGG) on glucose/lipid homeostasis in high-fat-diet-induced diabetic animal model.
View Article and Find Full Text PDF