Self-cleaving ribozymes are catalytic RNAs and can be found in all domains of life. They catalyze a site-specific cleavage that results in a 5' fragment with a 2',3' cyclic phosphate (2',3' cP) and a 3' fragment with a 5' hydroxyl (5' OH) end. Recently, several strategies to enrich self-cleaving ribozymes by targeted biochemical methods have been introduced by us and others.
View Article and Find Full Text PDFSelf-cleaving ribozymes are catalytically active RNAs that cleave themselves into a 5'-fragment with a 2',3'-cyclic phosphate and a 3'-fragment with a 5'-hydroxyl. They are widely applied for the construction of synthetic RNA devices and RNA-based therapeutics. However, the targeted discovery of self-cleaving ribozymes remains a major challenge.
View Article and Find Full Text PDFA large portion of animal and plant genomes consists of noncoding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features.
View Article and Find Full Text PDFSelf-cleaving ribozymes are catalytic RNAs that cut themselves at a specific inter-nucleotide linkage. They serve as a model of RNA catalysis, and as an important tool in biotechnology. For most of the nine known structural classes of self-cleaving ribozymes, at least hundreds of examples are known, and some are present in multiple domains of life.
View Article and Find Full Text PDFUntil recently, RNA-RNA interactions were mainly identified by crosslinking RNAs with interacting proteins, RNA proximity ligation and deep sequencing. Recently, AMT-based direct RNA crosslinking was established. Yet, several steps of these procedures are rather inefficient, reducing the output of identified interaction partners.
View Article and Find Full Text PDF