In healthy bones, mineralization has to be tightly controlled to avoid pathological phenotypes. In this study, we investigated interactions between 1α,25(OH)2 D3 (1,25D3) and activin A in the regulation of osteoblast induced mineralization. In human osteoblast cultures, we demonstrated that besides stimulation of mineralization, 1,25D3 also induced activin A, a strong inhibitor of mineralization.
View Article and Find Full Text PDFBoth vitamin D receptor (VDR) and peroxisome proliferator-activated receptor γ (PPAR-γ) are ligand-activated nuclear transcription factors that are instrumental for bone health. While 1α,25-dihydroxyvitamin D3 (1,25D3), the ligand for VDR, is essential for the development and maintenance of healthy bone, PPAR-γ agonists cause detrimental skeletal effects. Recent studies have revealed evidence for a cross-talk between 1,25D3- and PPAR-α/-δ ligand-mediated signaling but there is a current lack of knowledge regarding cross-talk between signaling of 1,25D3 and the PPAR-γ ligand mediated signaling.
View Article and Find Full Text PDFIt is well established that 1α-25-dihydroxyvitamin D3 (1,25D3) regulates osteoblast function and stimulates mineralization by human osteoblasts. The aim of this study was to identify processes underlying the 1,25D3 effects on mineralization. We started with gene expression profiling analyses of differentiating human pre-osteoblast treated with 1,25D3.
View Article and Find Full Text PDFOsteoimmunology is an emerging field of research focused on the interaction of the immune system and bone. In this study we demonstrate that human osteoblasts are sensitive to the immune cytokine interferon (IFN)β. Osteoblasts respond to IFNβ as shown by the induction of several known IFN target genes such as interferon-induced (IFI) proteins (IFIT1, IFI44L), interferon-stimulated gene factor 3 (ISGF3) complex and the induction of IFNβ itself.
View Article and Find Full Text PDF1Alpha,25-dihydroxyitamin D(3) (1,25D3) deficiency leads to impaired bone mineralization. We used the human pre-osteoblastic cell line SV-HFO, which forms within 19 days of culture an extracellular matrix that starts to mineralize around day 12, to examine the mechanism by which 1,25D3 regulates osteoblasts and directly stimulates mineralization. Time phase studies showed that 1,25D3 treatment prior to the onset of mineralization, rather than during mineralization led to accelerated and enhanced mineralization.
View Article and Find Full Text PDF