The National Institute of Health (NIH) Library of integrated network-based cellular signatures (LINCS) program is premised on the generation of a publicly available data resource of cell-based biochemical responses or "signatures" to genetic or environmental perturbations. NeuroLINCS uses human inducible pluripotent stem cells (hiPSCs), derived from patients and healthy controls, and differentiated into motor neuron cell cultures. This multi-laboratory effort strives to establish i) robust multi-omic workflows for hiPSC and differentiated neuronal cultures, ii) public annotated data sets and iii) relevant and targetable biological pathways of spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS).
View Article and Find Full Text PDFiScience
November 2021
Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in .
View Article and Find Full Text PDFYoung-onset Parkinson's disease (YOPD), defined by onset at <50 years, accounts for approximately 10% of all Parkinson's disease cases and, while some cases are associated with known genetic mutations, most are not. Here induced pluripotent stem cells were generated from control individuals and from patients with YOPD with no known mutations. Following differentiation into cultures containing dopamine neurons, induced pluripotent stem cells from patients with YOPD showed increased accumulation of soluble α-synuclein protein and phosphorylated protein kinase Cα, as well as reduced abundance of lysosomal membrane proteins such as LAMP1.
View Article and Find Full Text PDFReversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation.
View Article and Find Full Text PDF