Early defects in placenta development are thought to underlie a range of adverse pregnancy conditions including miscarriage, fetal growth abnormalities, preeclampsia, and stillbirth. Differentiating trophoblast stem cells undergo a choreographed allocation of syncytiotrophoblast and extravillous trophoblast cells in response to signaling cues from the developing fetus and the uterine environment. The expression and activity of transcription factors and chromatin modifying enzymes change during differentiation to appropriately reshape the chromatin landscape in each cell type.
View Article and Find Full Text PDFUnlabelled: Placental infection plays a central role in the pathogenesis of congenital human cytomegalovirus (HCMV) infections and is a cause of fetal growth restriction and pregnancy loss. HCMV can replicate in some trophoblast cell types, but it remains unclear how the virus evades antiviral immunity in the placenta and how infection compromises placental development and function. Human trophoblast stem cells (TSCs) can be differentiated into extravillous trophoblasts (EVTs), syncytiotrophoblasts (STBs), and organoids, and this study assessed the utility of TSCs as a model of HCMV infection in the first trimester placenta.
View Article and Find Full Text PDFSex determination in mammals hinges on a cell fate decision in the fetal bipotential gonad between formation of male Sertoli cells or female granulosa cells. While this decision normally is permanent, loss of key cell fate regulators such as the transcription factors Dmrt1 and Foxl2 can cause postnatal transdifferentiation from Sertoli to granulosa-like (Dmrt1) or vice versa (Foxl2). Here, we examine the mechanism of male-to-female transdifferentiation in mice carrying either a null mutation of Dmrt1 or a point mutation, R111G, that alters the DNA-binding motif and causes human XY gonadal dysgenesis and sex reversal.
View Article and Find Full Text PDFMany transcription factors regulating the production, survival, and function of photoreceptor cells have been identified, but little is known about transcriptional co-regulators in retinal health and disease. Here, we show that BCL6 co-repressor (BCOR), a Polycomb repressive complex 1 factor mutated in various cancers, is involved in photoreceptor degenerative diseases. Using proteomics and transcription assays, we report that BCOR interacts with the transcription factors CRX and OTX2 and reduces their ability to activate the promoters of photoreceptor-specific genes.
View Article and Find Full Text PDF