Antibody-drug conjugates (ADC) have shown impressive clinical activity with approval of many agents in hematologic and solid tumors. However, challenges remain with both efficacy and safety of ADCs. This study describes novel trastuzumab-auristatin conjugates with the hydrophilic monomethylauristatin E (MMAE) prodrug MMAU, and optimization of a glycopeptide linker leading to a wider therapeutic window.
View Article and Find Full Text PDFAutoimmune diseases such as rheumatoid arthritis are caused by immune system recognition of self-proteins and subsequent production of effector T cells that recognize and attack healthy tissue. Therapies for these diseases typically utilize broad immune suppression, which can be effective, but which also come with an elevated risk of susceptibility to infection and cancer. T cell recognition of antigens is driven by binding of T cell receptors to peptides displayed on major histocompatibility complex proteins (MHCs) on the cell surface of antigen-presenting cells.
View Article and Find Full Text PDFRNA interference (RNAi) offers the potential to treat disease at the earliest onset by selectively turning off the expression of target genes, such as intracellular oncogenes that drive cancer growth. However, the development of RNAi therapeutics as anti-cancer drugs has been limited by both a lack of efficient and target cell-specific delivery systems and the necessity to overcome numerous intracellular barriers, including serum/lysosomal instability, cell membrane impermeability, and limited endosomal escape. Here, we combine two technologies to achieve posttranscriptional gene silencing in tumor cells: Centyrins, alternative scaffold proteins binding plasma membrane receptors for targeted delivery, and small interfering RNAs (siRNAs), chemically modified for high metabolic stability and potency.
View Article and Find Full Text PDFClinical application of siRNA-based therapeutics outside of the liver has been hindered by the inefficient delivery of siRNA effector molecules into extra-hepatic organs and cells of interest. To understand the parameters that enable RNAi activity in vivo, it is necessary to develop a systematic approach to identify which cells within a tissue are permissive to oligonucleotide internalization and activity. In the present study, we evaluate the distribution and activity within the lung of chemically stabilized siRNA to characterize cell-type tropism and structure-activity relationship.
View Article and Find Full Text PDFAim: Alternative scaffold proteins have emerged as novel platforms for development of therapeutic applications. One such application is in protein-drug conjugates (PDCs), which are analogous to antibody-drug conjugates.
Methodology: Liquid chromatography-mass spectrometry methods for quantitation of total protein, conjugate and free payload for a PDC based on Centyrin scaffold were developed.