Background: Earlier studies have established that culturing human ovarian tissue in a 3D system with a small amount of soluble Matrigel (a basement membrane protein) for 7 days in vitro increased gene fusion and alternative splicing events, cellular functions, and potentially impacted gene expression. However, this method was not suitable for in vitro culture of human testicular tissue.
Objective: To test a new method for long-time in vitro culture of testicular fragments, thawed with two different regimes, with evaluation of transcriptomic differences by RNA sequencing.
In medicine, ovarian tissue cryopreservation exists for fertility preservation of cancer patients. In fact, ovarian tissue frozen for subsequent thawing and re-transplantation can be contaminated with cancer cells. Therefore, investigations on the effect of cryopreservation on the post-thawed viability of such cells are relevant.
View Article and Find Full Text PDFBiopreserv Biobank
December 2024
This publication reports, for the first time, the birth of a healthy child after intracytoplasmic sperm injection (ICSI) of motile spermatozoa after conventional ("slow") freezing of epididymal spermatozoa using 5% polyvinylpyrrolidone (PVP) of high molecular weight (360 kDa). Cryopreservation solution with 10% PVP was added to 30 µL of spermatozoa suspension in a 1:1 ratio, with a final PVP concentration of 5%. Then, polycarbonate capillaries for oocyte denudation with a diameter of 170 µm were filled with 60 µL of the resulting sperm suspension.
View Article and Find Full Text PDFCryopreservation of human testicular tissue, as a key element of anticancer therapy, includes the following stages: saturation with cryoprotectants, freezing, thawing, and removal of cryoprotectants. According to the point of view existing in "classical" cryobiology, the thawing mode is the most important consideration in the entire process of cryopreservation of any type of cells, including cells of testicular tissue. The existing postulate in cryobiology states that any frozen types of cells must be thawed as quickly as possible.
View Article and Find Full Text PDFExcessive levels of reactive nitrogen species (RNS), such as peroxynitrite, promote nitrosative stress, which is an important cause of impaired sperm function. The metalloporphyrin FeTPPS is highly effective in catalyzing the decomposition of peroxynitrite, reducing its toxic effects in vivo and in vitro. FeTPPS has significant therapeutic potential in peroxynitrite-related diseases; however, its effects on human spermatozoa under nitrosative stress have not been described.
View Article and Find Full Text PDF