The ability of mesenchymal stem cells (MSCs) to differentiate into neuronal lineage determines the potential of these cells as a substrate for a cell replacement therapy. In this paper we compare the neurogenic potential of MSCs isolated from bone marrow (BMSC), subcutaneous adipose tissue (AD MSC) and menstrual blood (eMSC). It was found that the native eMCSs, BMSCs and AD MSCs express neuronal marker β-III-tubulin with a frequency of 90, 50 and 14%, respectively.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) can be isolated from many adult tissue sources. These cells are a valuable substrate in cell therapy for many diseases and injuries. Different types of MSCs vary in plasticity.
View Article and Find Full Text PDFMesenchymal stem cells isolated from human endometrium (eMSC) are perspective source of stem cells for regenerative medicine. Large amount of these cells accumulated by in vitro cultivation is usually required for transplantation into patients. We established several cell eMSC lines and cultivated them during long period of time to examine the possibility of their spontaneous transformation.
View Article and Find Full Text PDFCell replacement and restorative therapies have great perspectives in the treatment of various diseases and traumas. Various types of stem cells, most different in the biological properties, are evaluated as the potential substrates of cell therapy for such diseases. Mesenchymal stem cells (MSC) posses relatively high proliferative activity and high level of plasticity, and can be differentiated not only to the cells of the mesenchymal lineage, but also to the neurons.
View Article and Find Full Text PDFOxidative stress has been shown to induce either apoptosis or stress-induced premature senescence (SIPS) in different cell types. At present, it is generally accepted that stem cells have high resistance to oxidative stress; however data reported by various authors are controversial. In this study, we investigated stress responses of human embryonic stem cells (hESC) and human mesenchymal stem cells (hMESC) derived from desquamated endometrium to hydrogen peroxide (H2O2).
View Article and Find Full Text PDF