The Qin and Western Han dynasties (221 BCE to 24 CE) represent an era of societal prosperity in China. However, due to a lack of high-resolution paleoclimate records it is still unclear whether the agricultural boost documented for this period was associated with more favorable climatic conditions. Here, multiparameter analysis of annually resolved tree-ring records and process-based physiological modeling provide evidence of stable and consistently humid climatic conditions during 270 to 77 BCE in northern China.
View Article and Find Full Text PDFGlobal warming has induced an increase in the intensity and frequency of summer extreme high temperature events in Chinese subtropical forest, which contributes to a large component of net primary ecological production among global forests. However, how summer extreme high temperature events would influence tree radial growth in these humid subtropical forest remains unclear. We investigated the non-linear response of tree radial growth to temperature, soil moisture and their mixed effect across broad latitude gradients in Chinese subtropical forests, using a method of modelling cambial growth kinetics of Schima superba.
View Article and Find Full Text PDFAs major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues.
View Article and Find Full Text PDFWood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e.
View Article and Find Full Text PDFClimate changes influence seasonal tree-ring formation. The result is a specific cell structure dependent on internal processes and external environmental factors. One way to investigate and analyze these relationships is to apply diverse simulation models of tree-ring growth.
View Article and Find Full Text PDF