Publications by authors named "V I Rubtsov"

The regularities of microstructure formation in samples of multiphase composites obtained by additive electron beam manufacturing on the basis of aluminum alloy ER4043 and nickel superalloy Udimet-500 have been studied. The results of the structure study show that a multicomponent structure is formed in the samples with the presence of CrC carbides, solid solutions based on aluminum -Al or silicon -Si, eutectics along the boundaries of dendrites, intermetallic phases AlNi, AlNi, Al5CoNi, and AlCo, as well as carbides of complex composition AlCCr, AlSiC, of a different morphology. The formation of a number of intermetallic phases present in local areas of the samples was also distinguished.

View Article and Find Full Text PDF

In this work, based on the multilevel approach, the features of the structure and properties of titanium alloy, formed during high-performance additive manufacturing by wire-feed electron beam technology, were studied. Methods of non-destructive X-ray control and tomography, along with optical and scanning electron microscopy, were used to study the structure at different scale levels of the sample material. The mechanical properties of the material under stress were revealed via the simultaneous observation of the peculiarities of deformation development, using a Vic 3D laser scanning unit.

View Article and Find Full Text PDF

This paper is devoted to using multi-pass friction stir processing (FSP) for admixing 1.5 to 30 vol.% copper powders into an AA5056 matrix for the in situ fabrication of a composite alloy reinforced by Al-Cu intermetallic compounds (IMC).

View Article and Find Full Text PDF

The paper investigated the possibility of obtaining large-sized blocks of C11000 copper on stainless steel substrates via electron beam wire-feed additive technology. The features of the microstructure and grain texture formation and their influence on the mechanical properties and anisotropy were revealed. A strategy of printing large-sized C11000 copper was determined, which consists of perimeter formation followed by the filling of the internal layer volume.

View Article and Find Full Text PDF

A gradient transition zone was obtained using electron beam deposition from AA4047 wire on AA7075 substrate and characterized for microstructures, tensile strength and corrosion resistance. The microstructure of the transition zone was composed of aluminum alloy grains, Al/Si eutectics and Fe-rich and Si-rich particles. Such a microstructure provided strength comparable to that of AA7075-T42 substrate but more intense corrosion due to the higher amount of anodic MgSi particles.

View Article and Find Full Text PDF