Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses.
View Article and Find Full Text PDFYeasts Cryptococcus humicola accumulated cadmium, cobalt, and iron (~ 50, 17, and 4% of the content in the medium, respectively) from the medium containing glucose, phosphate, and 2 mmol/L of metal salts. The effects of metal absorption on the levels of orthophosphate (Pi) and inorganic polyphosphate (polyP) varied for the metals under study. The levels of Pi and polyP increased in the case of cadmium and cobalt, respectively.
View Article and Find Full Text PDFMutant cycle analysis has been used in previous studies to constrain possible docking orientations for various toxins. As an independent test of the bound orientation of μ-conotoxin PIIIA, a selectively targeted sodium channel pore blocker, we determined the contributions to binding voltage dependence of specific residues on the surface of the toxin. A change in the "apparent valence" (zδ) of the block, which is associated with a change of a specific toxin charge, reflects a change in the charge movement within the transmembrane electric field as the toxin binds.
View Article and Find Full Text PDFThe first μ-conotoxin studied, μCTX GIIIA, preferentially blocked voltage-gated skeletal muscle sodium channels, Na(v)1.4, while μCTX PIIIA was the first to show significant blocking action against neuronal voltage-gated sodium channels. PIIIA shares >60% sequence identity with the well-studied GIIIA, and both toxins preferentially block the skeletal muscle sodium channel isoform.
View Article and Find Full Text PDFAntarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one.
View Article and Find Full Text PDF