Publications by authors named "V I Nikitenko"

An analytical model of highly nonequilibrium hopping transport of charge carriers in disordered organic semiconductors has been developed. In particular, the initial time interval is considered when transport is controlled by hops down in energy. The model is applied to the calculation of the separation probability of geminate pairs in a semiconductor with a Gaussian energy distribution of localized states.

View Article and Find Full Text PDF

Spatial-energy correlations strongly influence charge and exciton transport in weakly ordered media such as organic semiconductors and nanoparticle assemblies. Focusing on cases with shorter-range interparticle interactions, we develop a unified analytic approach that allows us to calculate the temperature and field dependence of charge carrier mobility in organic quadrupole glasses and the temperature dependence of the diffusion coefficient of excitons in quantum dot solids. We obtain analytic expressions for the energy distribution of hopping centers, the characteristic escape time of charge/exciton from the energy well stemming from energy correlations around deep states, and the size of the well.

View Article and Find Full Text PDF

An analytical description of the separation probability of a geminate pair in organic semiconductors is given. The initial diffusion of "hot" twins is anomalously strong due to energy disorder. This circumstance significantly increases the photogeneration quantum yield at low temperatures and weakens its temperature dependence relative to predictions of the Onsager model, in agreement with Monte Carlo and experimental results.

View Article and Find Full Text PDF

We apply density functional theory to study carrier mobility in a γ-phosphorus carbide monolayer. Although previous calculations predicted high and anisotropic mobility in this material, we show that the mobility can be significantly influenced by common antisite defects. We demonstrate that at equilibrium concentrations defects do not inhibit carrier mobility up to temperatures of 1000 K.

View Article and Find Full Text PDF

The existence of two novel hybrid two-dimensional (2D) monolayers, 2D BCP and 2D BCP, has been predicted based on the density functional theory calculations. It has been shown that these materials possess structural and thermodynamic stability. 2D BCP is a moderate band gap semiconductor, while 2D BCP is a zero band gap semiconductor.

View Article and Find Full Text PDF