Publications by authors named "V I Makhno"

A modified nucleotide on the 3'-side of the anticodon loop of tRNA is one of the most important structure element regulating codon-anticodone interaction on the ribosome owing to the stacking interaction with the stack of codon-anticodon bases. The presence and identity (pyrimidine, purine or modified purine) of this nucleotide has an essential influence on the energy of the stacking interaction on A- and P-sites of the ribosome. There is a significant influence of the 37-modification by itself on the P-site, whereas there is no such one on the A-site of the ribosome.

View Article and Find Full Text PDF

The anticodon loop of tRNA contains a number of conserved or semiconserved nucleotides. In most tRNAs, a highly modified purine is found at position 37 immediately 3' to the anticodon. Here, we examined the role of the base at position 37 for tRNA(Phe) binding to the A site of Escherichia coli ribosomes.

View Article and Find Full Text PDF

To estimate the effect of modified nucleotide-37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAK+YPhe and Phe-tRNAK-YPhe) with the A site of complex [70S.poly(U).deacylated tRNA(Phe) in the P site] was assayed at 0-20 degrees C.

View Article and Find Full Text PDF

Purpuromycin, an antibiotic produced by Actinoplanes ianthinogenes, had been reported previously to inhibit protein synthesis. In the present report, we demonstrate that the mechanism of action of this antibiotic is quite novel in that it binds with fairly high affinity to all tRNAs, inhibiting their acceptor capacity. Although more than one molecule of purpuromycin is bound to each tRNA molecule, the inhibitory activity of this antibiotic was found to be selective for the tRNA acceptor function; in fact, after the aminoacylation step, purpuromycin was found to affect none of the other tested functions of tRNA (interaction with the ribosomal P- and A-sites and interaction with translation factors).

View Article and Find Full Text PDF

In an attempt to understand how Escherichia coli ribosomes recognize the initiator codon on mRNAs lacking the Shine-Dalgarno (SD) sequence, we have studied 30S initiation complex formation in extension inhibition (toeprinting) experiments using (-SD)mRNAs which are known to be reliably translated in E. coli: the plant viral messenger A1MV RNA 4 and two chimaeric mRNAs coding for beta-glucuronidase (GUS) and bearing the 5'-untranslated sequence of TMV RNA (omega) or the omega-derived sequence (CAA)n as 5'-leaders. Ribosomal protein S1 and IF3 have been found to be indispensable for translational initiation.

View Article and Find Full Text PDF