Pressure-induced phase transformations (PTs) in Si, the most important electronic material, have been broadly studied, whereas strain-induced PTs have never been studied in situ. Here, we reveal in situ various important plastic strain-induced PT phenomena. A correlation between the direct and inverse Hall-Petch effect of particle size on yield strength and pressure for strain-induced PT is predicted theoretically and confirmed experimentally for Si-I→Si-II PT.
View Article and Find Full Text PDFVarious phenomena (phase transformations (PTs), chemical reactions, microstructure evolution, strength, and friction) under high pressures in diamond-anvil cell are strongly affected by fields of stress and plastic strain tensors. However, they could not be measured. Here, we suggest coupled experimental-analytical-computational approaches utilizing synchrotron X-ray diffraction, to solve an inverse problem and find fields of all components of stress and plastic strain tensors and friction rules before, during, and after α-ω PT in strongly plastically predeformed Zr.
View Article and Find Full Text PDFDeep-focus earthquakes that occur at 350-660 km are assumed to be caused by olivine → spinel phase transformation (PT). However, there are many existing puzzles: (a) What are the mechanisms for jump from geological 10 - 10 s to seismic 10 - 10 s strain rates? Is it possible without PT? (b) How does metastable olivine, which does not completely transform to spinel for over a million years, suddenly transform during seconds? (c) How to connect shear-dominated seismic signals with volume-change-dominated PT strain? Here, we introduce a combination of several novel concepts that resolve the above puzzles quantitatively. We treat the transformation in olivine like plastic strain-induced (instead of pressure/stress-induced) and find an analytical 3D solution for coupled deformation-transformation-heating in a shear band.
View Article and Find Full Text PDFCrystallographic theory based on energy minimization suggests austenite-twinned martensite interfaces with specific orientation, which are confirmed experimentally for various materials. Pressure-induced phase transformation (PT) from semiconducting Si-I to metallic Si-II, due to very large and anisotropic transformation strain, may challenge this theory. Here, unexpected nanostructure evolution during Si-I → Si-II PT is revealed by combining molecular dynamics (MD), crystallographic theory, generalized for strained crystals, and in situ real-time Laue X-ray diffraction (XRD).
View Article and Find Full Text PDFHierarchy of crystal lattice instabilities leading to a first-order phase transformation (PT) is found, which consists of PT instability described by the order parameter and elastic instabilities under different prescribed stress measures. After PT instability and prior to the elastic instability, an unexpected continuous third-order PT was discovered, which is followed by a first-order PT after the elastic instability. Under prescribed compressive second Piola-Kirchhoff stress, PT is third order until completion; it occurs without hysteresis and dissipation, properties that are ideal for various applications.
View Article and Find Full Text PDF