Publications by authors named "V I Kukushka"

Benzodiazepines have a broad spectrum of clinical applications including sedation, anti-anxiety, and anticonvulsive therapy. At the cellular level, benzodiazepines are allosteric modulators of GABA(A) receptors; they increase the efficacy of inhibition in neuronal networks by prolonging the duration of inhibitory postsynaptic potentials. This mechanism of action predicts that benzodiazepines reduce the frequency of inhibition-driven network oscillations, consistent with observations from human and animal EEG.

View Article and Find Full Text PDF

Spatiotemporal activity patterns of neurones are organized by different types of coherent network oscillations. Frequency content and cross-frequency coupling of cortical oscillations are strongly state-dependent, indicating that different patterns of wakefulness or sleep, respectively, support different cognitive or mnestic processes. It is therefore crucial to analyse specific sleep patterns with respect to their oscillations, including interaction between fast and slow rhythms.

View Article and Find Full Text PDF

Background: The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to long-range slow oscillations.

View Article and Find Full Text PDF

There is growing interest in sleep research and increasing demand for screening of circadian rhythms in genetically modified animals. This requires reliable sleep stage scoring programs. Present solutions suffer, however, from the lack of flexible adaptation to experimental conditions and unreliable selection of stage-discriminating variables.

View Article and Find Full Text PDF

The aim of this work was to explore the electrical spatial profile of the dendritic arborization during membrane potential oscillations of a bistable motoneuron. Computational simulations provided the spatial counterparts of the temporal dynamics of bistability and allowed simultaneous depiction the electrical states of any sites in the arborization. We assumed that the dendritic membrane had homogeneously distributed specific electrical properties and was equipped with a cocktail of passive extrasynaptic and NMDA synaptic conductances.

View Article and Find Full Text PDF