Publications by authors named "V I Klimov"

Present-day liquid-state lasers are based on organic dyes. Here we demonstrate an alternative class of liquid lasers that use solutions of colloidal quantum dots (QDs). Previous efforts to realize such devices have been hampered by the fast non-radiative Auger recombination of multicarrier states required for optical gain.

View Article and Find Full Text PDF

In the last decade, the task of developing environmentally friendly and cost-effective methods for obtaining stable superhydrophobic coatings has become topical. In this study, we examined the effect of the concentrations of filler and polymer binder on the hydrophobic properties and surface roughness of composite coatings made from organic-aqueous compositions based on hexyl methacrylate (HMA) and glycidyl methacrylate (GMA) copolymers. Silicon dioxide nanoparticles were used as a filler.

View Article and Find Full Text PDF

Colloidal quantum-dot (QD) lasing is normally achieved in close-packed solid-state films, as a high QD volume fraction is required for stimulated emission to outcompete fast Auger decay of optical-gain-active multiexciton states. Here a new type of liquid optical-gain medium is demonstrated, in which compact compositionally-graded QDs (ccg-QDs) that feature strong suppression of Auger decay are liquefied using a small amount of solvent. Transient absorption measurements of ccg-QD liquid suspensions reveal broad-band optical gain spanning a wide spectral range from 560 (green) to 675 nm (red).

View Article and Find Full Text PDF

The natural oscillations of the electromagnetic field in a particle made from left-handed metamaterial, where both permittivity and permeability are negative, are considered. Based on the exact solution of the sourceless Maxwell equations, it is shown that due to the opposite directions of the phase and group velocities in the metamaterial, natural oscillations in such particles decay exponentially at infinity, that is, these natural oscillations can be considered as trapped modes with a finite energy. The manifestation of such modes in experiments with Bessel beams is also discussed.

View Article and Find Full Text PDF

Carrier multiplication is a process whereby a kinetic energy of a carrier relaxes via generation of additional electron-hole pairs (excitons). This effect has been extensively studied in the context of advanced photoconversion as it could boost the yield of generated excitons. Carrier multiplication is driven by carrier-carrier interactions that lead to excitation of a valence-band electron to the conduction band.

View Article and Find Full Text PDF