Publications by authors named "V I Govardovskii"

Retinas of the river lamprey Lampetra fluviatilis were studied by microspectrophotometry, electroretinography and single-photoreceptor electrophysiology to reconcile the apparently contradictory conclusions on the nature of lamprey photoreceptor cells drawn in the early work by Govardovskii and Lychakov (J Comp Physiology A 154:279-286, 1984) and in recent studies. In agreement with recent works, we confirmed former identification of short photoreceptors as rods and of long photoreceptors as cones. In line with the results of 1984, we show that within a certain range of light intensities the lamprey retina exhibits "color discrimination".

View Article and Find Full Text PDF

Rod photoreceptors of the vertebrate retina produce, in darkness, spontaneous discrete current waves virtually identical to responses to single photons. The waves comprise an irreducible source of noise (discrete dark noise) that may limit the threshold sensitivity of vision. The waves obviously originate from acts of random activation of single rhodopsin molecules.

View Article and Find Full Text PDF

Purpose: To identify steps of the phototransduction cascade responsible for the delay of the photoresponse.

Methods: Electrical responses of fish () cones and frog rods and cones were recorded with a suction pipette technique and as an aspartate-isolated mass receptor potential from isolated perfused retinas. Special attention was paid to sufficiently high temporal resolution (1-ms flash, 700 Hz amplification bandpass).

View Article and Find Full Text PDF

The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment.

View Article and Find Full Text PDF