Publications by authors named "V I Gavrilenko"

Britholites are the lanthanide-silica-rich end-members of the apatite group, commonly studied for their optical properties. Here, we show ∼50-100 μm single crystals synthesized hydrothermally at 650-500 °C and 500-300 MPa composed of a solid solution between CaPr(SiO)F-fluorbritholite and CaPr(SiO)O-oxybritholite, with a significant carbonate component substitution, via C replacing Si. Single-crystal X-ray diffraction and density functional theory computations show that a planar carbonate group occupies the face of a now-vacant silica tetrahedron.

View Article and Find Full Text PDF

HgCdTe-based heterostructures with quantum wells (QWs) are a promising material for semiconductor lasers in the atmospheric transparency window (3-5 μm) thanks to the possibility of suppressing Auger recombination due to the no-parabolic law of carrier dispersion. In this work, we analyze the thresholds of stimulated emission (SE) under optical pumping from heterostructures with a different number of QWs in the active region of the structure. Total losses in structures are determined from the comparison of thresholds for the different number of QWs in the active region.

View Article and Find Full Text PDF

Heterostructures with thin Hg(Cd)Te/CdHgTe quantum wells (QWs) are attractive for the development of mid-infrared interband lasers. Of particular interest are room-temperature operating emitters for the short-wavelength infrared range (SWIR, typically defined as 1.7-3 μm).

View Article and Find Full Text PDF

We have calculated two-dimensional plasmon energy spectra in HgTe/CdHgTe quantum wells with normal, gapless, and inverted energy spectra with different electron concentrations, taking into account spatial dispersion of electron polarizability and plasmon interaction with the optical phonons. The spectra of the absorption coefficients of two-dimensional plasmons are found. It is shown that an increase of electron concentration in a quantum well leads to a decrease in the plasmon absorption coefficient.

View Article and Find Full Text PDF

HgTe/CdHgTe quantum well (QW) heterostructures have attracted a lot of interest recently due to insights they provided towards the physics of topological insulators and massless Dirac fermions. Our work focuses on HgCdTe QWs with the energy spectrum close to the graphene-like relativistic dispersion that is supposed to suppress the non-radiative Auger recombination. We combine various methods such as photoconductivity, photoluminescence and magneto-optical measurements as well as transmission electron microscopy to retrofit growth parameters in multi-QW waveguide structures, designed for long wavelengths lasing in the range of 10-22 μm.

View Article and Find Full Text PDF