It is shown that delocalized vortex solitons in relativistic pair plasmas with small temperature asymmetries can be unstable for intermediate intensities of the background electromagnetic field. Instability leads to the generation of ever-expanding cavitating bubbles in which the electromagnetic fields are zero. The existence of such electromagnetic bubbles is demonstrated by qualitative arguments based on a hydrodynamic analogy, and by numerical solutions of the appropriate nonlinear Schrödinger equation with a saturating nonlinearity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2009
The nonlinear propagation of electromagnetic waves in pair plasmas, in which the electrostatic potential plays a very important but subdominant role of a "binding glue" is investigated. Several mechanisms for structure formation are investigated, in particular, the "asymmetry" in the initial temperatures of the constituent species. It is shown that the temperature asymmetry leads to a (localizing) nonlinearity that is qualitatively different from the ones originating in ambient mass or density difference.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2008
It is shown that for super intense laser pulses propagating in a hot plasma, the action of the radiation reaction force (appropriately incorporated into the equations of motion) causes strong bulk plasma motion with the kinetic energy raised even to relativistic values; the increase in bulk energy is accompanied by a corresponding cooling (intense cooling) of the plasma. The effects are demonstrated through explicit analytical calculations.
View Article and Find Full Text PDFBy invoking the radiation reaction force, first perturbatively derived by Landau and Lifschitz, and later shown by Rohrlich to be exact for a single particle, we construct a set of fluid equations obeyed by a relativistic plasma interacting with the radiation field. After showing that this approach reproduces the known results for a locally Maxwellian plasma, we derive and display the basic dynamical equations for a general magnetized plasma in which the radiation reaction force augments the direct Lorentz force.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2003
Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrödinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe.
View Article and Find Full Text PDF