The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi Te and MnBi Te benchmark the (MnBi Te )(Bi Te ) family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi Te septuple layers (SLs). However, the QAHE realization is complicated in MnBi Te and MnBi Te due to the substantial antiferromagnetic (AFM) coupling between the SLs.
View Article and Find Full Text PDFPhys Rev Lett
September 2013
We have used resonant x-ray diffraction to develop a detailed description of antiferromagnetic ordering in epitaxial superlattices based on two-unit-cell thick layers of the strongly correlated metal LaNiO3. We also report reference experiments on thin films of PrNiO3 and NdNiO3. The resulting data indicate a spiral state whose polarization plane can be controlled by adjusting the Ni d-orbital occupation via two independent mechanisms: epitaxial strain and spatial confinement of the valence electrons.
View Article and Find Full Text PDFThe electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
View Article and Find Full Text PDFA combined synchrotron X-ray diffraction and transmission electron microscopy study reveals a structural phase transition controlled by the overall thickness of epitaxial nickelate-aluminate superlattices. The transition between uniform and twin-domain states is confined to the nickelate layers and leaves the aluminate layers unaffected.
View Article and Find Full Text PDFEpitaxial strain imposed in complex oxide thin films by heteroepitaxy is recognized as a powerful tool for identifying new properties and exploring the vast potential of materials performance. A particular example is LaCoO(3), a zero spin, nonmagnetic material in the bulk, whose strong ferromagnetism in a thin film remains enigmatic despite a decade of intense research. Here, we use scanning transmission electron microscopy complemented by X-ray and optical spectroscopy to study LaCoO(3) epitaxial thin films under different strain states.
View Article and Find Full Text PDF