Iron is a vital micronutrient for nearly all microorganisms, serving as a co-factor in critical metabolic pathways. However, cheese is an iron-restricted environment. Furthermore, it has been demonstrated that iron represents a growth-limiting factor for many microorganisms involved in cheese ripening and that this element is central to many microbial interactions occurring in this ecosystem.
View Article and Find Full Text PDFRecent metagenomic studies have identified numerous lineages of hydrogen-dependent, obligately methyl-reducing methanogens. Yet, only a few representatives have been isolated in pure culture. Here, we describe six new species with this capability in the family Methanosarcinaceae (order Methanosarcinales), which makes up a substantial fraction of the methanogenic community in arthropod guts.
View Article and Find Full Text PDFBacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study evolution of intracellular symbionts. We reconstructed 67 metagenome-assembled genomes (MAGs) of among more than 1,700 MAGs from the gut microbiota of a wide range of termites.
View Article and Find Full Text PDF