The genus, being one of the largest among high plants, is distributed worldwide and comprises about 1,200 species. The genus includes numerous agronomically important species such as (potato), (tomato), and (eggplant) as well as medical and ornamental plants. The huge genus is a convenient model for research in the field of molecular evolution and structural and functional genomics.
View Article and Find Full Text PDFThe history of rDNA research started almost 90 years ago when the geneticist, Barbara McClintock observed that in interphase nuclei of maize the nucleolus was formed in association with a specific region normally located near the end of a chromosome, which she called the nucleolar organizer region (NOR). Cytologists in the twentieth century recognized the nucleolus as a common structure in all eukaryotic cells, using both light and electron microscopy and biochemical and genetic studies identified ribosomes as the subcellular sites of protein synthesis. In the mid- to late 1960s, the synthesis of nuclear-encoded rRNA was the only system in multicellular organisms where transcripts of known function could be isolated, and their synthesis and processing could be studied.
View Article and Find Full Text PDFThis article comments on: Nicola Schmidt, Kathrin M. Seibt, Beatrice Weber, Trude Schwarzacher, Thomas Schmidt, and Tony Heitkam, Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (), Volume 128, Issue 3, 26 August 2021, Pages 281–291, https://doi.org/10.
View Article and Find Full Text PDFBackground: Polyploid hybrids represent a rich natural resource to study molecular evolution of plant genes and genomes. Here, we applied a combination of karyological and molecular methods to investigate chromosomal structure, molecular organization and evolution of ribosomal DNA (rDNA) in nightshade, Atropa belladonna (fam. Solanaceae), one of the oldest known allohexaploids among flowering plants.
View Article and Find Full Text PDF