Publications by authors named "V Heinonen"

Objectives: The aim of the present study is to investigate the morphological and cellular changes in dental extraction socket that has been irradiated after the tooth extraction and to describe morphological characteristics of the osteocytes and osteocyte-lacunar-canalicular network (LCN) by scanning electron microscopy (SEM).

Material And Methods: Five beagle dogs aged 1-2 years were used in this study. One side of each mandible was irradiated in two sessions and the other side of mandible (non-irradiated) served as a control.

View Article and Find Full Text PDF

The phase-field-crystal (PFC) approach extends the notion of phase-field models by describing the topology of the microscopic structure of a crystalline material. One of the consequences is that local variation of the interatomic distance creates an elastic excitation. The dynamics of these excitations poses a challenge: pure diffusive dynamics cannot describe relaxation of elastic stresses that happen through phonon emission.

View Article and Find Full Text PDF

We use the amplitude expansion in the phase field crystal framework to formulate an approach where the fields describing the microscopic structure of the material are coupled to a hydrodynamic velocity field. The model is shown to reduce to the well-known macroscopic theories in appropriate limits, including compressible Navier-Stokes and wave equations. Moreover, we show that the dynamics proposed allows for long wavelength phonon modes and demonstrate the theory numerically showing that the elastic excitations in the system are relaxed through phonon emission.

View Article and Find Full Text PDF

Phase-field-crystal (PFC) models constitute a field theoretical approach to solidification, melting, and related phenomena at atomic length and diffusive time scales. One of the advantages of these models is that they naturally contain elastic excitations associated with strain in crystalline bodies. However, instabilities that are diffusively driven towards equilibrium are often orders of magnitude slower than the dynamics of the elastic excitations, and are thus not included in the standard PFC model dynamics.

View Article and Find Full Text PDF

We determine the orientation-resolved interfacial free energy between a body-centered-cubic (bcc) crystal and the coexisting fluid for a many-particle system interacting via a Yukawa pair potential. For two different screening strengths, we compare results from molecular dynamics computer simulations, density functional theory, and a phase-field-crystal approach. Simulations predict an almost orientationally isotropic interfacial free energy of 0.

View Article and Find Full Text PDF