Parkinson's disease (PD) is a fatal neurodegenerative disorder that is primarily caused by the degeneration and loss of dopaminergic neurons of the substantia nigra in the ventral midbrain. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of late-onset PD identified to date, with G2019S being the most frequent LRRK2 mutation, which is responsible for up to 1-2% of sporadic PD and up to 6% of familial PD cases. As no treatment is available for this devastating disease, developing new therapeutic strategies is of foremost importance.
View Article and Find Full Text PDFCertain anticonvulsant drugs require N-acetylation as a major route of metabolic clearance. Single point mutations of the polymorphic N-acetyltransferase gene (pNAT) are the primary cause for impaired drug acetylation. Pharmacokinetic parameters are altered in slow acetylator phenotypes and this may compromise drug safety.
View Article and Find Full Text PDF