Objectives: We aimed to assess prevalence of left ventricular (LV) systolic and diastolic function in stable cohort of COPD patients, where LV disease had been thoroughly excluded in advance.
Methods: 100 COPD outpatients in GOLD II-IV and 34 controls were included. Patients were divided by invasive mean pulmonary artery pressure (mPAP) in COPD-PH (≥25 mmHg) and COPD-non-PH (<25 mmHg), which was subdivided in mPAP ≤20 mmHg and 21-24 mmHg.
Int J Chron Obstruct Pulmon Dis
April 2019
Background: Pulmonary hypertension (PH) in patients with COPD is associated with reduced exercise capacity. A subgroup of COPD patients has normal mean pulmonary artery pressure (mPAP) at rest, but develops high mPAP relative to cardiac output (CO) during exercise, a condition we refer to as exercise-induced pulmonary hypertension (EIPH). We hypothesized that COPD patients with EIPH could be identified by cardiopulmonary exercise test (CPET) and that these patients have lower exercise capacity and more abnormal CPET parameters compared to COPD patients with normal hemodynamic exercise response.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
September 2018
Background: Exercise tolerance decreases as COPD progresses. Pulmonary hypertension (PH) is common in COPD and may reduce performance further. COPD patients with and without PH could potentially be identified by cardiopulmonary exercise test (CPET).
View Article and Find Full Text PDFIn the lower solar atmosphere, the chromosphere is permeated by jets known as spicules, in which plasma is propelled at speeds of 50 to 150 kilometers per second into the corona. The origin of the spicules is poorly understood, although they are expected to play a role in heating the million-degree corona and are associated with Alfvénic waves that help drive the solar wind. We compare magnetohydrodynamic simulations of spicules with observations from the Interface Region Imaging Spectrograph and the Swedish 1-m Solar Telescope.
View Article and Find Full Text PDFActive regions (ARs) appearing on the surface of the Sun are classified into α, β, γ, and δ by the rules of the Mount Wilson Observatory, California on the basis of their topological complexity. Amongst these, the δ sunspots are known to be superactive and produce the most x-ray flares. Here, we present results from a simulation of the Sun by mimicking the upper layers and the corona, but starting at a more primitive stage than any earlier treatment.
View Article and Find Full Text PDF