Publications by authors named "V H van der Velden"

Minimal residual disease (MRD) diagnostics is of high clinical relevance in patients with indolent B-cell non-Hodgkin lymphomas (B-NHL), B-cell chronic lymphocytic leukemia (CLL), and multiple myeloma and serves as a surrogate parameter to evaluate treatment effectiveness and long-term prognosis. Real-time quantitative PCR (RQ-PCR) targeting circulating lymphoma cells is still the gold standard for MRD detection in indolent B-NHL and currently the most sensitive and the most broadly applied method in follicular lymphoma (FL) and mantle cell lymphoma (MCL). Alternatively, droplet digital PCR (ddPCR) can be used for MRD monitoring in multiple myeloma, mantle cell lymphoma, CLL, and FL with comparable sensitivity, accuracy, and reproducibility.

View Article and Find Full Text PDF

Measurable residual disease (MRD) is regularly tested at later timepoints after the end of first consolidation (EOC) in children with acute lymphoblastic leukemia (ALL). The question remains whether this is useful for detecting (molecular) relapse. We investigated the clinical relevance of MRD after EOC in intermediate risk patients treated on DCOG-ALL-10 (n = 271) and DCOG-ALL-9 (n = 122), with MRD <0.

View Article and Find Full Text PDF

Pediatric acute lymphoblastic leukemia (ALL) is marked by low mutational load at initial diagnosis, which increases at relapse. To determine which processes are active in (relapsed) ALL and how they behave during disease progression before and after therapy, we performed whole genome sequencing on 97 tumor samples of 29 multiply relapsed ALL patients. Mutational load increased upon relapse in 28 patients and upon every subsequent relapse in 22 patients.

View Article and Find Full Text PDF

IKZF1 deletions occur in 10-15% of patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) and predict a poor outcome. However, the impact of IKZF1 loss on sensitivity to drugs used in contemporary treatment protocols has remained underexplored. Here we show in experimental models and in patients that loss of IKZF1 promotes resistance to cytarabine (AraC), a key component of both upfront and relapsed treatment protocols.

View Article and Find Full Text PDF