Publications by authors named "V Govinden"

Electric bubbles are sub-10nm spherical vortices of electric dipoles that can spontaneously form in ultra-thin ferroelectrics. While the static properties of electric bubbles are well established, little to nothing is known about the dynamics of these particle-like structures. Here, we reveal pathways to realizing both the spontaneous and controlled dynamics of electric bubbles in ultra-thin Pb(ZrTi)O films.

View Article and Find Full Text PDF

In ferroelectrics, complex interactions among various degrees of freedom enable the condensation of topologically protected polarization textures. Known as ferroelectric solitons, these particle-like structures represent a new class of materials with promise for beyond-CMOS technologies due to their ultrafine size and sensitivity to external stimuli. Such polarization textures have scarcely been demonstrated in multiferroics.

View Article and Find Full Text PDF

Spherical ferroelectric domains, such as electrical bubbles, polar skyrmion bubbles and hopfions, share a single and unique feature-their homogeneously polarized cores are surrounded by a vortex ring of polarization whose outer shells form a spherical domain boundary. The resulting polar texture, typical of three-dimensional topological solitons, has an entirely new local symmetry characterized by a high polarization and strain gradients. Consequently, spherical domains represent a different material system of their own with emergent properties drastically different from that of their surrounding medium.

View Article and Find Full Text PDF

Whilst often discussed as non-trivial phases of low-dimensional ferroelectrics, modulated polar phases such as the dipolar maze and the nano-bubble state have been appraised as essentially distinct. Here we emphasize their topological nature and show that these self-patterned polar states, but also additional mesophases such as the disconnected labyrinthine phase and the mixed bimeron-skyrmion phase, can be fathomed in their plurality through the unifying canvas of phase separation kinetics. Under compressive strain, varying the control parameter, i.

View Article and Find Full Text PDF

Ferroelectric materials possess a spontaneous polarization that is switchable by an electric field. Robust retention of switched polarization is critical for non-volatile nanoelectronic devices based on ferroelectrics, however, these materials often suffer from polarization relaxation, typically within days to a few weeks. Here we exploit designer-defect-engineered epitaxial BiFeO films to demonstrate polarization retention with virtually no degradation in switched nanoscale domains for periods longer than 1 year.

View Article and Find Full Text PDF