The loss of information accompanying assessment of absolute fit of substitution models to phylogenetic data negatively affects the discriminatory power of previous methods and can make them insensitive to lineage-specific changes in the substitution process. As an alternative, I propose evaluating absolute fit of substitution models based on a novel statistic which describes the observed data without information loss and which is unlikely to become zero-inflated with increasing numbers of taxa. This method can accommodate gaps and is sensitive to lineage-specific shifts in the substitution process.
View Article and Find Full Text PDFThough it is well accepted that mitochondria originated from an alphaproteobacteria-like ancestor, the phylogenetic relationship of the mitochondrial endosymbiont to extant Alphaproteobacteria is yet unresolved. The focus of much debate is whether the affinity between mitochondria and fast-evolving alphaproteobacterial lineages reflects true homology or artefacts. Approaches such as site exclusion have been claimed to mitigate compositional heterogeneity between taxa, but this comes at the cost of information loss, and the reliability of such methods is so far unproven.
View Article and Find Full Text PDFA novel test is described that visualizes the absolute model-data fit of the substitution and tree components of an evolutionary model. The test utilizes statistics based on counts of character state matches and mismatches in alignments of observed and simulated sequences. This comparison is used to assess model-data fit.
View Article and Find Full Text PDFThe development of new resistant varieties to the oomycete (Berk.& Curt) is a promising way to combat downy mildew (DM), one of the major diseases threatening the cultivated grapevine ( L.).
View Article and Find Full Text PDF