Despite extensive research, the features associated with the aging phenotype are not all-inclusive and need to be updated on a regular basis to incorporate new findings. We propose to include the dysfunction of membrane-less organelle (MLO) as a new aging hallmark. Special scaffold proteins with a high degree of intrinsic disorder drive the formation of MLOs via the liquid-liquid phase separation (LLPS) process.
View Article and Find Full Text PDFThe primary goal of our work is to provide structural insights into the influence of the hydrophobic lipid environment on the membrane proteins (MPs) structure and function. Our work will not cover the well-studied hydrophobic mismatch between the lipid bilayer and MPs. Instead, we will focus on the less-studied direct molecular interactions of lipids with the hydrophobic surfaces of MPs.
View Article and Find Full Text PDFHeliorhodopsins (HeRs) constitute a novel and distinct group of microbial rhodopsins, characterized by the inverted position of C- and N- termini relative to conventional Type I rhodopsins. The production of HeRs for structural and functional investigations has proven challenging, as evidenced by the structural elucidation of only two proteins and the functional characterization of a few others to date. Notably, no eukaryotic HeRs have been reported thus far.
View Article and Find Full Text PDFThe primary role of telomerase is the lengthening of telomeres. Nonetheless, emerging evidence highlights additional functions of telomerase outside of the nucleus. Specifically, its catalytic subunit, TERT (Telomerase Reverse Transcriptase), is detected in the cytosol and mitochondria.
View Article and Find Full Text PDF