The microbiota-gut-brain axis is a complex interconnected system altered in schizophrenia. The antioxidant N-acetylcysteine (NAC) has been proposed as an adjunctive therapy to antipsychotics in clinical trials, but its role in the microbiota-gut-brain axis has not been sufficiently explored. We aimed to describe the effect of NAC administration during pregnancy on the gut-brain axis in the offspring from the maternal immune stimulation (MIS) animal model of schizophrenia.
View Article and Find Full Text PDFEur Neuropsychopharmacol
May 2021
The likely involvement of inflammation and oxidative stress (IOS) in mental disease has led to advocate anti-oxidant and anti-inflammatory drugs as therapeutic strategies in the treatment of schizophrenia. Since omega-3 fatty acids (ω-3) show anti-inflammatory/neuroprotective properties, we aim to evaluate whether ω-3 treatment during adolescence in the maternal immune stimulation (MIS) animal model of schizophrenia could prevent the brain and behavioural deficits described in adulthood. At gestational day 15, PolyI:C (4 mg/kg) or saline (VH) were injected to pregnant Wistar rats.
View Article and Find Full Text PDFMicroglia controls the immune system response in the brain. Specifically, the activation and dysregulation of the NLRP3 inflammasome is responsible for the initiation of the inflammatory process through IL-1β and IL-18 release. In this work, we have focused on studying the effect of melatonin on the regulation of the NLRP3 inflammasome through α7 nicotinic receptor (nAChR) and its relationship with autophagy.
View Article and Find Full Text PDFBackground And Purpose: Minocycline is a broad-spectrum antibiotic, effective as a chronic treatment for recurrent bacterial infections. Beyond its antibiotic action, minocycline also has important anti-inflammatory, antioxidant and antiapoptotic properties. Its efficacy has therefore been evaluated in many neurodegenerative and psychiatric diseases that have an inflammatory basis.
View Article and Find Full Text PDFBackground And Purpose: Ischaemic stroke is a leading cause of death, disability, and a high unmet medical need. Post-reperfusion inflammation and an up-regulation of toll-like receptor 4 (TLR4), an upstream sensor of innate immunity, are associated with poor outcome in stroke patients. Here, we identified the therapeutic effect of targeting the LPS/TLR4 signal transduction pathway.
View Article and Find Full Text PDF