Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS.
View Article and Find Full Text PDFMolecular structure-based predictive models provide a proven alternative to costly and inefficient animal testing. However, due to a lack of interpretability of predictive models built with abstract molecular descriptors they have earned the notoriety of being black boxes. Interpretable models require interpretable descriptors to provide chemistry-backed predictive reasoning and facilitate intelligent molecular design.
View Article and Find Full Text PDFDrug discovery and development is a costly and time-consuming endeavor (Calcoen et al. Nat Rev Drug Discov 14(3):161-162, 2015; The truly staggering cost of inventing new drugs. Forbes.
View Article and Find Full Text PDFThe evaluation of impurities for genotoxicity using in silico models are commonplace and have become accepted by regulatory agencies. Recently, the ICH M7 Step 4 guidance was published and requires two complementary models for genotoxicity assessments. Over the last ten years, many companies have developed their own internal genotoxicity models built using both public and in-house chemical structures and bacterial mutagenicity data.
View Article and Find Full Text PDFReliable prediction of two fundamental human pharmacokinetic (PK) parameters, systemic clearance (CL) and apparent volume of distribution (Vd), determine the size and frequency of drug dosing and are at the heart of drug discovery and development. Traditionally, estimated CL and Vd are derived from preclinical in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) measurements. In this paper, we report quantitative structure-activity relationship (QSAR) models for prediction of systemic CL and steady-state Vd (Vdss) from intravenous (iv) dosing in humans.
View Article and Find Full Text PDF