Tattooing is a popular form of body art that has evolved from ancient times into being part of modern society. The understanding of biotransformation processes of coloring tattoo pigments in human skin is limited although skin reactions to tattoos with unknown culprits occur. Electrochemistry coupled to mass spectrometry (EC-MS) has widely been used as a tool for a purely instrumental approach to simulating the enzymatic biotransformation of xenobiotics.
View Article and Find Full Text PDFDegradation of xenobiotics in wastewater treatment plants may lead to the formation of transformation products with higher persistence or increased (eco-)toxic potential compared to the parent compounds. Accordingly, the identification of transformation products from wastewater treatment plant effluents has gained increasing attention. Here, we show the potential of electrochemistry hyphenated to liquid chromatography and mass spectrometry for the prediction of oxidative degradation in wastewater treatment plants using the antihypertensive drug valsartan as a model compound.
View Article and Find Full Text PDFLaser desorption/ionization-mass spectrometry (LDI-MS) is introduced as a complementary technique for the analysis of interphases formed at electrode|electrolyte interfaces in lithium ion batteries (LIBs). An understanding of these interphases is crucial for designing interphase-forming electrolyte formulations and increasing battery lifetime. Especially organic species are analyzed more effectively using LDI-MS than with established methodologies.
View Article and Find Full Text PDFJ Pharm Biomed Anal
October 2023
The hypolipidemic and hypoglycemic drug benfluorex was widely applied to treat type 2 diabetes mellitus and metabolic syndrome in overweight patients since 1976. However, benfluorex was connected to multiple cases of valvular heart disease and pulmonary arterial hypertension later on. Similar adverse drug reactions were previously found to be associated to the structurally related drug fenfluramine, which was attributed to the formation of its N-deethylated metabolite norfenfluramine.
View Article and Find Full Text PDFThe development of a new drug requires knowledge about its metabolic fate in a living organism, regarding the comprehensive assessment of both drug therapeutic activity and toxicity profiles. Electrochemistry (EC) coupled with mass spectrometry (MS) is an efficient tool for predicting the phase I metabolism of redox-sensitive drugs. In particular, EC/MS represents a clear advantage for the generation of reactive drug transformation products and their direct identification compared to biological matrices.
View Article and Find Full Text PDF