The therapeutic potential of CDK4/6 inhibitors for brain tumors has been limited by recurrence. To address recurrence, we tested a nanoparticle formulation of CDK4/6 inhibitor palbociclib (POx-Palbo) in mice genetically-engineered to develop SHH-driven medulloblastoma, alone or in combination with specific agents suggested by our analysis. Nanoparticle encapsulation reduced palbociclib toxicity, enabled parenteral administration, improved CNS pharmacokinetics, and extended mouse survival, but recurrence persisted.
View Article and Find Full Text PDFThe Mutant Mouse Resource and Research Center (MMRRC) Program is the pre-eminent public national mutant mouse repository and distribution archive in the USA, serving as a national resource of mutant mice available to the global scientific community for biomedical research. Established more than two decades ago with grants from the National Institutes of Health (NIH), the MMRRC Program supports a Consortium of regionally distributed and dedicated vivaria, laboratories, and offices (Centers) and an Informatics Coordination and Service Center (ICSC) at three academic teaching and research universities and one non-profit genetic research institution. The MMRRC Program accepts the submission of unique, scientifically rigorous, and experimentally valuable genetically altered and other mouse models donated by academic and commercial scientists and organizations for deposition, maintenance, preservation, and dissemination to scientists upon request.
View Article and Find Full Text PDFThe inflammasome promotes inflammation-associated diseases, including cancer, and contributes to the radiation-induced tissue damage. However, the role of inflammasome in radiation-induced antitumor effects is unclear. We observed that tumors transplanted in mice were resistant to radiation treatment compared with tumors in wild-type (WT) mice.
View Article and Find Full Text PDFObjective: Aneurysmal subarachnoid hemorrhage remains a devastating event with poorly understood pathophysiology. Previous studies have suggested that aneurysm wall inflammation may play a part in the development and potential rupture of aneurysms. The rabbit elastase aneurysm model is a well-established model, which produces aneurysms closely mimicking human cerebral aneurysms in flow dynamics and histopathology.
View Article and Find Full Text PDF