Publications by authors named "V Goblot"

Monitoring neuronal activity with simultaneously high spatial and temporal resolution in living cell cultures is crucial to advance understanding of the development and functioning of our brain, and to gain further insights in the origin of brain disorders. While it has been demonstrated that the quantum sensing capabilities of nitrogen-vacancy (NV) centers in diamond allow real time detection of action potentials from large neurons in marine invertebrates, quantum monitoring of mammalian neurons (presenting much smaller dimensions and thus producing much lower signal and requiring higher spatial resolution) has hitherto remained elusive. In this context, diamond nanostructuring can offer the opportunity to boost the diamond platform sensitivity to the required level.

View Article and Find Full Text PDF

Phase frustration in periodic lattices is responsible for the formation of dispersionless flatbands. The absence of any kinetic energy scale makes flatband physics critically sensitive to perturbations and interactions. We report on the experimental investigation of the nonlinear response of cavity polaritons in the gapped flatband of a one-dimensional Lieb lattice.

View Article and Find Full Text PDF

We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the nonlinear dynamics of counterpropagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows us to use resonant pumping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to the kinetic energy, linear interference fringes transform into a train of solitons.

View Article and Find Full Text PDF