Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q) and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup degrees hosts.
View Article and Find Full Text PDFBacteriophage Mu repressor, which is stable in its wildtype form, can mutate to become sensitive to its Escherichia coli host ATP-dependent ClpXP protease. We further investigated the determinants of the mutant repressor's sensitivity to Clp. We show the crucial importance of a C-terminal, seven amino acid long sequence in which a single change is sufficient to decrease the rate of degradation of the protein.
View Article and Find Full Text PDFThe importance of proteases in gene regulation is well documented in both prokaryotic and eukaryotic systems. Here we describe the first example of genetic regulation controlled by the Escherichia coli Clp ATP-dependent serine protease. Virulent mutants of bacteriophage Mu, which carry a particular mutation in their repressor gene (vir mutation), successfully infect Mu lysogens and induce the resident Mu prophage.
View Article and Find Full Text PDFVirulent mutations in the bacteriophage Mu repressor gene were isolated and characterized. Recombination and DNA sequence analysis have revealed that virulence is due to unusual frameshift mutations which change several C-terminal amino acids. The vir mutations are in the same repressor region as the sts amber mutations which, by eliminating several C-terminal amino acids, suppress thermosensitivity of repressor binding to the operators by its N-terminal domain (J.
View Article and Find Full Text PDF