L-Azetidine-2-carboxylic acid (LACA), a naturally occurring vegetable imino acid, can be incorporated into mammalian proteins in place of proline, thereby eliciting an inhibitory effect on collagen secretion. Exposure of explants of the embryonic mouse inner ear to LACA reduces the number of collagen fibrils in the otic capsule, gives rise to a dose-dependent derangement of the basal lamina, and ultimately results in dysmorphogenesis and retarded differentiation of the inner ear. Disproportionate micromelia (Dmm) is an incomplete dominant form of dwarfism characterized by a reduced quantity of type II collagen in the cartilaginous extracellular matrix (ECM).
View Article and Find Full Text PDFRetinoic acid (RA) is an active metabolite of vitamin A that is teratogenic when present in excess during mammalian embryogenesis. We have investigated the effect of embryonic exposure to nonphysiological levels of all-trans RA on the development of the mouse inner ear. Dysmorphogenesis of both vestibular and auditory portions of the inner ear, and abnormal formation of the surrounding capsule are produced by exposure to teratogenic levels of RA at an embryonic age of 9 days (E9).
View Article and Find Full Text PDFAuditory hair cells produce trophic factors that directly affect maturation and survival of auditory neurons. These factors include two members of the neurotrophin family: brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). Loss of hair cells, as a result of either noise trauma or ototoxic damage, results in the degeneration of auditory neurons.
View Article and Find Full Text PDFDeveloping cochleovestibular ganglion (CVG) neurons depend upon interaction with the otocyst, their peripheral target tissue, for both trophic support and tropic guidance. RT-PCR of E11 through E14 otocyst-CVG RNA extracts have shown that NGF as well as BDNF and NT-3 are expressed in the developing inner ear (in situ RT-PCR on tissue sections of E12 otocysts localized all three neurotrophins to the otocyst). To evaluate the functional significance of NGF, BDNF and NT-3 expression, E10.
View Article and Find Full Text PDFInteractions between the epithelial anlage of the developing mouse inner ear and its associated periotic mesenchyme control the differentiation of the cartilaginous otic capsule. Transforming growth factor-beta 1 (TGF-beta 1) is a naturally occurring signal peptide that is present in these tissues at times of active differentiation and morphogenesis. Previous studies have shown that TGF-beta 1 alone is not a sufficient stimulus to initiate chondrogenesis in cultured periotic mesenchyme.
View Article and Find Full Text PDF